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An iterative finite difference model is developed to describe. two-dimensional periodic 
gravity waves on the surface of a fluid containing vorticity in the form of a vertical shear 
current. A coordinate transformation due to Dubreil-Jacotin has been used to map the 
fluid domain into a rectangle. The full nonlinear constant pressure free surface boundary 
condition is used iteratively until convergence is achieved. A comparison is made to an 
analytical model for a linear shear current and results are also shown for a mean flow with 
a (+) power law velocity distribution. 

Gravity waves propagating on the surface of a fluid have been the impetus for 
numerous analytical and numerical studies since the 1800s. The goal has been to 
describe the fluid particle kinematics and the free surface displacements due to the 
presence of the waves. Few studies, however, have allowed the inclusion of currents, 
other than those induced by the waves; yet, in nature, currents are almost always 
present, modifying the wave characteristics. 

Early studies, such as those by Airy [I] and Stokes [2], were concerned with irro- 
tational water waves on an incompressible and inviscid fluid. To this day, the Stokes 
wave theory, which has been carried out to high orders in wave steepness analytically 
[3], is used for offshore design. Gerstner [4] developed the first exact finite amplitude 
rotational water wave theory, yet his theory is incapable of allowing a mean flow, 
further, the sense of the fluid vorticity of the fluid particles is in the opposite direction 
of the orbital motion induced by the waves. 

Numerical solutions to water wave problems have been obtained many ways. 
Numerical perturbation procedures using the velocity potential [5] and the stream 
function [6] for finite amplitude irrotational water waves can be used to any arbitrary 
order. Dalrymple [7] has extended Dean’s [6] stream function approach to waves on 
linear shear currents. Dalrymple and Cox [8] have used a similar method for shear 
current profiles which vary exponentially over depth. From purely numerical 
approaches the time-dependent wave motion of a fluid has been studied by Hirt et al. 
[9], Nichols and Hirt [lo], including the effects of fluid viscosity, and by Chan and 
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Street [I 1 J, using a modified marker and cell approach for a solitary wave on an ideal 
fluid. None of these procedures include a current. 

Recently, Chan [12] examined solitary waves utilizing a transformed coordinate 
system and the full nonlinear free surface boundary condition (constant pressure). 
His iterative technique at the free surface is similar to the one used here. The analytical 
analog to his study for periodic waves was developed by von Schwind and Reid [13]. 
Again, these studies are conducted for an ideal, or irrotational, fluid. 

Mme. Dubreil-Jacotin [14], extending the convergence proofs of Levi-Civita [15] 
and Struick [16] for irrotational waves to waves on arbitrary vorticity distributions 
and thus arbitrary current velocity profiles over depth, used a variable transformation. 
Her technique was later applied to periodic waves via a perturbation approach by 
Daubert [17] and by Brooke-Benjamin [18] to solitary waves. The Dubreil-Jacotin 
transformation was used here to develop a finite difference model for finite amplitude 
propagation of a fluid possessing an arbitrary vorticity distribution. 

The model describes periodic waves, as these are most useful for offshore design, 
however, it can be adapted to treat solitary waves by a modification of the lateral 
boundary conditions (cf. [18]). 

GOVERNING EQUATIONS 

Assuming a two-dimensional incompressible fluid overlaying an impermeable 
horizontal bottom, a stream function exists and can be used to describe the water 
particle motions by the following definitions. 

w-u-c= -l&, 
v = &. 

Here (U, u, V) refer to the mean current velocity and the horizontal and vertical 
wave-induced velocities and C is the phase speed of the wave, unknown a priori. 
The problem has been rendered steady state by translating the coordinate system 
with the wave speed. The fluid vorticity is given by Lamb [19], 

4Jm + A/, = f(%4 (2) 

where f(#) is constant on a streamline and is the vorticity distribution function. For 
the classical wave theories of Airy and Stokes, f(lCI> = 0. The difficulty with this 
problem lies in the fact that f(#) is a function of the dependent variable, $(x, y) 
and that a priori the domain of the fluid is unknown as the surface displacement, 
y = T(X), is unknown. 

To eliminate these difficulties, Dubreil-Jacotin developed a coordinate trans- 
formation which maps the wave domain into a rectangle and ties the free surface, 
by posing the problem with y as a function of x and $. Her transformation results 
by using the stream function definitions, Eq. (I), written as 

u + u - c = -(l/y,); v = - Wh) (3) 
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and transforming Eq. (2). The resulting nonlinear second-order equation is 

Yr2Yrz - 2YzY&Y,, + (1 + Y1E2) Y&lb = -YlmT4* (4) 

Despite the obviously more difficult governing equation, the domain of the problem 
has been transformed into a rectangle, with a base the length of the wave and a height 
equal to the value of the surface streamline, #,, , rather than the wave-shaped region 
for the Poisson equation (Eq. (2)). See Fig. 1, noting that due to symmetry only one- 
half the length of the wave need be studied. In the transformed domain, y refers to 
the elevation above the bottom. 

A 

FIG. 1. Fluid domains for rotational water waves (a) Conventional stream function approach. 
(b) Dubreil-Jacotin transformed coordinates. 

A further advantage is gained as the vorticity distribution, f(#), is now specified 
as a function of an independent variable. Dubreil-Jacotin showed that for a given 
wave number, k, water depth, h, a wave height parameter, and an f($), there is a 
rotational wave which exists and is unique. Dubreil-Jacotin did not, however, offer 
a solution to her equation. 

The boundary conditions to be satisfied by the governing equations are that there 
be no flow through the bottom, the solution be periodic in the direction of propa- 
gation, taken to be the x-coordinate direction, and that the free surface be a constant 
pressure streamline. It is only the last of these that proves to be a problem, due to the 
nonlinearities involved. The computational technique will involve using the Bernoulli 
equation along the free surface streamline in an iterative method to achieve the final 
solution. 

FINITE DIFFERENCE FORMULATION 

In order to readily adapt the Dubreil-Jacotin equation to finite difference form, it 
is convenient to cast the problem into dimensionless form by defining the following 
dimensionless variables. 

+Y. 
h’ 

x’ = kx; 

581/24/1-3 
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where h is the still water depth, k (= 27r/L) is the wave number, and I&, is the value 
of the surface streamline. Therefore, the governing equation may be written in non- 
dimensional form. The primes have been omitted for convenience for the remainder 
of the paper and Eq. (4) takes the form 

(6) 

The rectangular domain of the solution must be represented by a grid, which extends 
from 0 to v in the x direction and from 0 to 1 in the # coordinate direction. Figure 2 
is a schematic of the grid system; the i index refers to the # direction and thej index, 
the x direction. The requirement that the solution is periodic in x necessitates the 
inclusion of two extra columns of grid points, at x = --Ax and at x = r + Ax, as 
will be discussed shortly. 

By use of central differences, differential equation (6) may be approximated by 

I +[ 
y(j, i +- 1) + y(j, i - 1) 

I 
( & + Yr2j f(i) y 3 

v(j, i) = 
2 (A $1)” + 2(kh;. 

($ + 
( $jF + Yr2j 

(A $1)” 

i=M 

(7) 

FIG. 2. Schematic of the finite diiTerence scheme utilized for the Dubreil-Jacotin equation. 
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where 

y, = v(j+ l,i)-a- 134 . 
2Ax > ye = ~(j, i + 1) - v(A i - 1) 

2AlcI 
7 

y(j + 1, i + 1) - y(j - 1, i + 1) + y(j - 1, i - 1) - v(j + 1, i - y21 1) = 
4Ax A# 

andf(i) is a discrete representation off(#). As with all elliptic equations, Eq. (7) shows 
that u( j, i) is a weighted average of its neighboring points. 

The boundary condition at the bottom is satisfied by specifying u(j, 1) = 0 (for 
1 < j < N + I), thus the vertical velocity v (= -~E/~ll) is zero at the bottom. The 
periodicity requirement is imposed by specifying ~(1, i) = ~(3, i) and Y(N + 1, i) = 
Y(N - 1, i) (for 1 < i < M) which reflects y about the wave crest and trough. 

The more difficult boundary conditions are those at the surface. These are the mean 
sea level constraints, which insures that the presence of the wave does not alter the 
mean free surface location, the dynamic free surface boundary condition (DFSBC), 
and the wave height constraint, which assures that the model converges to a given 
wave height. The first is written, in dimensionless form as 

(l/r) fn y(j, M) dx = 1 on 4 = 1, the surface streamline. 
0 

In finite difference form, Simpson’s rule is used to carry out the integration and this 
integration will be denoted hereafter as 

SW, ml f (Ax/3a~(2, m + 4~(3, w + 2~(4, w + - + 2~07 - 2, ~4) 
+ 4w - 1, M) + Y(N Ml. 

The DFSBC which forces the pressure to be constant along the free surface is imposed 
by specifying that the Bernoulli constant Q(j) be equal to & at all grid points on the 
free surface streamline, which in dimensionless form is 

Q(j) = y( j, M) + & I1 ’ @$y3’1 = Q for all j (i = M) (8) 

where 

and g is the acceleration of gravity. 

SoLuno~ TECHNIQUE 

The finite difference solution is obtained iteratively due to nonlinearities inherent 
in the free surface boundary condition. First, an approximate solution is used to 
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initialize the ~(j, i). This approximate solution for a wave of height, H, may be the 
first-order Daubert [17] solution in dimensionless form 

Yh $4 = ti + 
Hsinh c-1 

* 
cos x 

2h sinh c t 1 
or 

H sinh khz+b 
V(X, ~) = 1cI ’ 2h sinh kh CO’ X 

(94 

VW 

(as to first order, t&, = Ch) or the numerical shear current solution of Dalrymple [7]. 
Next, the finite difference form of governing equation (7) is used to improve the fit 
of the interior points to the equation. The method of applying the equation to the 
grid used here is successive overrelaxation or the SOR method. It was experimentally 
found that for a relaxation parameter of 0, = 1.73, there is a large reduction of the 
numbers of sweeps over the grid necessary for convergence. (This value of 0, is also 
the optimum value for the solution of the Laplace equation, Roache [20].) In com- 
parison to the Leibmann method, there was an eightfold reduction in the number of 
sweeps for convergence. In practice, as the final solution was approached, the 0, 
parameter was reduced to achieve monotonic convergence. 

After a number of sweeps (e.g., 15 to 20), the errors to the free surface boundary 
conditions are then evaluated. The free surface, ~(j, M) is evaluated, using a backward 
difference form of governing equation (6). This ensures that the vorticity at the surface, 
f(M), is included into the DFSBC. The errors in the DFSBC are defined in terms of 
an objective function given as 

[Q(j) - 01” + h@[y(j, MI1 - 1) + &[y(2, M) - y(N, M) - HI 
00) 

and was used by Dalrymple [7]. An exact solution will yield OL equal to zero and, 
therefore, the solution procedure seeks to minimize Ok. 

The first term of Ok is defined here as the DFSBC error and its magnitude is used 
as an indicator of convergence. From Eq. (8) it is evident that Q(j) is a function 
of y(j - 1, M), y(j, M), and v(j + 1, M) and, therefore, the value of O”+l may be 
approximated by a first-order Taylor series in y(j, M)k, where k refers to the iteration. 

N 

*“+’ = (N L 1) z2 [QWk - Qk12 + 

+ WWi M) + u’(i, WI - 1) 
+ ~,bCT M) + y’C%W - W, W - YW, W - HI (11) 
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where the subscript indicates partial differentiation and ~‘(1, M) indicates a small cor- 
rection to ~(1, M). Minimizing Ok+l with respect to y’(n, M) and retaining only 
first-order derivatives gives the equations 

(Ok+l)y(n,~) = (N 2 l) jt [QWk - Pl[QWk - Qklytn,~) 

+ f [QWk - Qkly(n,~) [QWk - ~kly(~.~).W~ MI 1-2 

4 Ax 1,n = 2,N 

+ 3rr 4, n even 
i 

= 0. (12) 
2, n odd 

By letting n = 2 through N, N - 1 equations result for the N + 1 unknowns, 
~‘(j, M), A, and A, . By minimizing Ok+l with respect to the A, , two further equations 
result. 

W(j, WI = 1.0 - Wj, Ml, 

Y’P, w - Y’W, w = H - [YCT Ml - YW, WI. 
(13) 

There are now N + 1 equations which may be solved by matrix methods for the 
y’(j, M) which are then added to the ~(j, M) to decrease the magnitude of the DFSBC 
error. This addition is done as 

y”+Yj, W = Y”(j, W + 4d(.L Ml. 

The use of the SOR method at the free surface greatly speeds up the convergence of 
the model. 

The solution procedure may be summarized as follows. The grid is swept numerous 
times, using finite difference equation (7). Then the free surface boundary conditions 
are used iteratively to adjust the free surface shape to best satisfy the fit to the boundary 
conditions, given the present values of the internal grid points. Then the process is 
repeated a number of times until convergence is achieved. 

APPLICATIONS OF THE MODEL 

Uniform Current Case 

Before examining in detail waves propagating on currents with arbitrary vorticity, 
it is helpful to have a means of representing the steady current profile in the absence 
of waves in the x-I# plane, both for comparison with the results of the model and 
for determining input data. For a steady uniform current, all variations with respect 
to the x direction are zero. Dubreil-Jacotin equation (4) simplifies greatly to 
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This equation is separable through the use of the substitution w = ya with the results 

(15) 

The parameter w is equal by definition to -(iJ - C)-‘, and, therefore, the above 
equation may be solved for U, 

U(#) = C - (2 L’.f(@) di,b’ + Cz)“‘. (16) 

The value C represents the velocity of the reference frame. 
To determine the elevation of the streamline ZJ which has the velocity U(#), a further 

integration of (16) is necessary, 

(17) 

As an example of the use of these equations, for the linear shear current, where the 
fluid has a constant vorticity, -wO , the velocity profile is readily found to be 

U($) = c - (C2 - 2W&l/‘. (18) 

The elevations of the streamlines are expressed as 

Y(#) = (ll%)[C - (C2 - 2%W21. 09 

To determine the value of the surface streamline, & , which has the elevation, h, 
the above equation is used to find 

& = Ch - (o&2/2). (20) 

Suffice to say, that for more general vorticity distributions, the integrals in Eqs. 
(16) and (17) can be quite difficult to obtain analytically. 

Comparison to Numerical Shear Current Model 

A test of the theoretical validity of the finite difference model was conducted by 
comparing it to the results of the numerical linear shear current model of Dalrymple(7). 

The case selected was a wave 2.0 ft in height and a period of 10 seconds propagating 
in 10 ft of water against a shear current with w0 = -0.30 see-I. First, a nineteenth- 
order numerical shear current wave was generated. From this solution, values of 
kh and I,& were obtained for the finite difference model. For starting values of &, i), 
the linear Daubert solution (9), was used to initiate a 30 x 25 grid. This initial solution 
had a DFSBC error of 0.01 ft2. The finite difference procedure was then used to 
improve this solution, and after 200 iterations a minimum in the DFSBC error was 
achieved of 3.97 x lO-5 ft2. The final results are given in Table I, along with the corre- 
sponding results of the numerical shear current theory. For all the parameters of 
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TABLE I 

Comparison of the Lmear Shear Current Model and Finite Difference Representations of a Wave 
Propagating on an Opposing Linear Shear Current for the Same $(x, 7) and kh 

Desired Wave Characteristics: 

H = 2.0 ft, T = 10 set, h = 10 ft, w,, = -0.3 set-‘, & = 178.76 ft*/sec, kh = 0.3817 

Model 

Dynamic free 
surface boundary Mean sea level 
condition error, error 

EI (P 3 (ft) 

Wave height 
error 
(ft) 

Wave period, T 
(s=) 

Linear shear 
current 
(19th Order) 

5.90 x 10-e -4.98 x 1O-3 1.14 x 10-8 10.0 

Finite 
difference 

(30 x 25 grid) 
3.97 x 10-h 0.0 -4.77 x 10-s 9.968 

Finite 
difference 
(30 x 5Ogrid) 

1.52 x 10-S -3.04 x 10-s -9.54 x 10-B 9.975 

interest, with the exception of the wave period, the finite difference model is as good 
or better than the analytical theory. It is interesting to note that had the free surface 
been fixed at the values prescribed by Daubert’s solution and the internal grid points 
allowed to satisfy the full nonlinear governing difference equation, Eq. (7), that the 
final DFSBC error would have been reduced only to 3.7 x 1O-3 ft2, a full two orders 
of magnitude worse than the result given by the full model. 

To determine the effect of grid size on the solution, the values of the 30 x 25 grid 
after 190 iterations were linearly interpolated into a 30 x 50 grid. After 52 iterations 
over this grid, a minimum in the DFSBC was achieved of 1.52 x 1O-6 ft2, or a value 
over 60 % lower than that obtained by the 30 x 25 grid and certainly closer to the 
DFSBC error of the analytical theory of 5.90 x 1O-6 ft2. The final results obtained 
with the 30 x 50 grid are shown also in Table I. Again, the largest disparity between 
the analytical and the finite difference model lies in the wave period where the dis- 
crepancy is 0.025 set for the 30 x 50 grid. This is due to the accuracy of the input 
variables (three decimal places) and the method by which the wave period, T, is 
obtained in the finite difference model; that is, averaging (-(l/~@)($~,,/h) along the 
bottom for C and using the formula 

T = 2rrlkC. (21) 

The derivative, y, , is necessarily obtained by forward differences which results in 
an error 0(d#2), which, of course, is reduced rapidly as d$ becomes smaller. Thus 
the more detailed the grid, the more accurate is the wave period, as shown in Table I, 
by comparing the results of the two grids used. 
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To compare the results of the finite difference models with the analytical theory 
more directly, the velocity profie under the wave crest is shown in Fig. 3 for all three 
representations. The equation to determine the dimensional velocity in finite difference 
form is 

U($b) = c - 44l 
[v(j+ Li>-Y(j- l,i)lh (22) 

FIG. 3. (a) Linear shear current velocity profile in the absence of a wave. (b) Comparison of 
horizontal velocity profiles under the wave crest for linear shear current opposing the wave. 

Wave characteristics: H = 2.0 ft, T = 10.0 set, h = 10.0 ft, w0 = -f(4) = -0.3 set+, kh = 
0.3817, $,, = 178.76 ft’/sec. 

where, again, C is determined by averaging (-(l/y,)(#,Jh) along the bottom stream- 
line, as the wave motion will cancel out. 

The agreement between the models is quite good, the most notable difference 
occurring at the water surface. Also, in Fig. 4, the streamlines under the wave are 
shown for the analytic model and the 30 x 50 grid model. The results are in good 
agreement. 

The One-Seventh Power Law 

For a wave propagating in an inlet or a river, the ambient current profile is generally 
logarithmic as a result of turbulence. An approximation to this velocity profhe 
often used is the (3) power law 

u = um&/W’ (23) 
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Legend : 

o t 1 I I I I I I I I I I I --,64.6 
0 5.4 L/z 

FIG. 4. Comparison of streamline generated by numerical linear shear current model [12] and 
the finite difference model. 

where U,,, is the maximum velocity, which occurs at the surface and which is taken 
as -2 fps in this example, h is the water depth, which again is taken.as 10 ft. The 
vorticity of this flow is given as 

- u, = -( UInax/irh)( y/h)-“/‘. 

In the finite difference model it was assumed that the vorticity varied as 

(24) 

f(#l = (Gxbx/7h)(u/h)“” (25) 

which does not represent the same current because 4 is not linear in y. However, this 
vorticity distribution does generate a current profile which is very nearly the same as 
that of Eq. (24) as can be seen in Fig. 5a, there the differences in velocity at various 
elevations are less than 0.1 fps. For the wave propagating upstream against the 
curent, a wave height of 2.0 ft was chosen and the kh, tj,, , and the initial grid values 
were chosen to be exactly the same as in the previous example. Convergence of the 
model with a 30 x 30 grid was achieved in 150 iterations with the minimum DFSBC 
error of 1.39 x lo-* ft2, as shown in Table II, with the other errors. The velocity 
profile under the wave crest is shown in Figure 5b along with the initially prescribed 
proMe. Recall that the sole difference between these results and those of the previous 
example (Fig. 3b) is the vorticity distribution as kh, I,!&, h, and H were taken as the 
same. The difference in the velocity profile is dramatic. 

In Fig. 6, the wave-induced component, u, of the total velocity, U + U, (obtained 
by adding the values in 3a to those in 3b and similarly for Fig. 5), has been shown 
versus elevation for both the (+) power law current and the linear shear current. There 
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FIG. 5. (a) One-seventh power law current profile in the absence of a wave, based on elevation 
and stream function. (b) Horizontal velocity profile under the wave crest for one-seventh power 
law current opposing the wave. 

Wave characteristics: H = 2.0 ft, T = 9.49 set, h = 10.0 ft, f (4) = 0.0285(#+4J-6/7, kh = 0.3817, 
$,, = 17876ftQec. 

TABLE II 

Results and Errors in the Finite Difference Representation of a Wave Propagating on an Opposing 
Turbulent Current 

Desired Wave Characteristics: 

H = 2.0 ft, T = 10 set, h = 10 ft, f(#) = O.O285($/#,&e”, & = 178.76 ft*/sec 

Model 

Dynamic free 
surface boundary Mean sea level 
condition error, error, 

-3 WI (ft) 

Wave height 
error, 

(ft) 
Wave period, T 

(set) 

Finite 
difference 
(30 x 30 grid) 

1.39 x 10-a -1.84 x 10-S -1.67 x BP6 9.49 
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FIG. 6. Wave-induced velocity profiles for the linear shear current and one-seventh power law 
current under the wave crest. Open circles denote one-seventh power law velocities. 

are two noticeable differences between the profiles caused by the different vorticity 
distributions used: First, the strong vorticity near the bottom for the (+) power law 
has induced a forward velocity in the wave-induced motion and second, this same 
velocity profile is over 30% greater in magnitude than that for the linear shear current. 
This is primarily due to the fact that the wave period has decreased from 10 to 9.49 set 
resulting in a greater wave celerity, C, by Eq. (21), which finally caused greater hori- 
horizontal velocities, cf. Eqs. (9) and (3). This is a significantly different result than 
obtained earlier by Dalrymple [21], who showed using a linear shear current that with 
reasonable accuracy, the water motion under the wave crest could be reasonably 
well predicted by superimposing the current and the wave velocity profile. 

CONCLUSIONS AND FURTHER WORK 

A nonlinear finite difference model has been developed for finite amplitude gravity 
waves on vertically sheared currents. Applications to linear shear and (+) power law 
currents show significant differences in horizontal velocity profiles and the importance 
of vorticity in dertermining the water particle kinematics under the waves. 

Further work is necessary to improve the convergence rate of the model and to 
allow the model to generate waves on flows which are not colinear with the wave 
direction. This last change can be instituted quite easily as discussed by Dalrymple 
[22] to whom the interested reader is referred for more details of the model. 
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